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Abstract

Chemical composition data for fine and coarse particles collected in Phoenix, AZ were analyzed

using positive matrix factorization (PMF).  The objective was to identify the possible particle sources

contributing mass at the sampling site.  PMF uses estimates of the error in the data to provide optimum

data point scaling and permits a better treatment of missing and below-detection-limit values.  It also

applies the non-negativity constraints to the factors.  Two fine particle data sets were available because

samples were collected with two different samplers; a conventional dichotomous sampler and a DRI dual

fine particle sequential sampler (DFPSS).   Six source factors were obtained from both fine particle data

sets and have been identified as possible aerosol sources for the fine particles.  They are: (1) motor

vehicles described by the high concentrations of organic carbon (OC) and elemental carbon (EC) with

some soil dust components, (2) biomass burning which is typified by high concentrations of OC, EC and

K, (3) copper smelter characterized by S, Cu, Zn, and Pb, (4) sea salt factor dominated by Na and Cl, (5)

soil factor represented by Al, Si, Ca, Ti and Fe, and (6) S-factor (secondary sulfate) which is likely to

represent coal power plant emissions.  For the coarse particles collected in the dichotomous sampler, a 5-

factor model gave the most satisfactory source profiles.  The identified possible sources are: (1) sea salt,

(2) soil dust, (3) Fe source/motor vehicle, (4) construction (high Ca), and (5) coal power plant.  To

estimate the mass contributions of the resolved sources, the particulate matter mass was regressed against

the factor scores was performed.  It was found that the major sources for the fine particles were the motor

vehicle and the biomass burning factors.  These two sources contributed had higher concentrations in

winter time.  For the coarse particles, the major source contributions were soil and construction (high

Ca).  These sources also peaked in winter time. 
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INTRODUCTION

It is of great importance to identify air pollution source characteristics in the development of air

quality control strategies.  Receptor modeling, using measurements of aerosol chemical compositions at a

sampling site, is often a reliable way to provide information regarding source characteristics [1]. 

Multivariate receptor models are based on the analysis of the correlation between measured

concentrations of chemical species assuming that highly correlated compounds come from the same

source.  One commonly used multivariate receptor model is principal component analysis (PCA) [2]. 

PCA extracts the principal components explaining the majority of variance of the data matrix that are

then qualitatively interpreted as possible sources.  Although PCA has been applied as a tool for source

identification in some air quality studies [3,4], it suffers from several drawbacks in general.  The factors

of PCA are rarely physically explainable without further transformation (rotation), and no fully

satisfactory rotation techniques have yet been found.  In addition, PCA really represents a least squares

(LS) minimization.  This fit is weighted by implicitly assuming unrealistic standard deviations for the

variables in the data matrix.  Thus, the result of a principal component analysis does not represent a

minimum variance solution since it is based on incorrect weighting [5,6].  Among other limitations, PCA

can not properly handle missing and below-detection-limit data, a common occurrence in environmental

measurements.

A new approach called Positive Matrix Factorization (PMF) has been developed by Paatero [7,8]

to address the abovementioned problems.  In PMF, error estimates for each data value are utilized as

point-by-point weights.  Such weighting scheme allows the inclusion of uncertain data in the analysis by

giving them low weights.  In addition, constraints on the results such as non-negativity of the factors are

integrated into the computational process.  These features make physical sense in receptor modeling of

environmental data.  PMF has been successfully applied to the analysis of PTEAM (Particle Total

Exposure Assessment Methodology) data from Riverside, California [9], for the source identification of

bulk wet deposition in Finland [10], of aerosol in Alaska [11], and of Arctic aerosol [12].  Paterson et al.

[13] applied PMF to air quality and temperature data collected at a series of sites around the southern end

of Lake Michigan in 1997 and used three factors to reproduce 75% of the variation in the data.  Lee et al.

[14] have applied PMF to urban aerosol compositions in Hong Kong.  They were able to identify up to 9

sources that provided a good apportionment of the airborne particulate matter.

To examine the applicability of this new type of factor analysis as a source identification tool,

PMF was performed on the Phoenix aerosol data.  This paper presents the results of PMF study of

Phoenix aerosol chemical composition data for fine and coarse particles.  The major objective was to



3

identify possible aerosol sources at the sampling site, Phoenix using two different samples.  Through the

regression of the particulate matter mass against the factor scores, the mass contributions of the resolved

sources were estimated and compared, which provided better understanding of the origin and impact of

Phoenix aerosol.

DATA DESCRIPTION

The location of sampling site is Phoenix, AZ (3847 West Earl Drive, Latitude: N33°48'46'',

Longitude: W112°14'17'', Elevation: 1007 ft).   There were two different airborne particle samplers.  The

dual fine particle sequential sampler (DFPSS) developed at the Desert Research Institute and described in

the next subsection.  The other sampler was a conventional dichotomous sampler that uses virtual

impaction to separate the PM2.5 from the coarse particulate matter.  

DFPSS Data Set 

Daily, integrated 24-hour samples were collected on 37 millimeter (mm) diameter Teflon and

quartz filter media for fine particle mass and species measurements using a dual fine particle sequential

sampler (DFPSS).  The DFPSS has two separate channels, each with separate, Teflon coated 2.5 :m

cyclone inlets through which samples are collected simultaneously at a flow rate of 16.7 lpm.  The inlets

were located outside the monitoring shelter.  The filter packs and the Teflon-coated distribution

manifolds were located inside the shelter and maintained at 30 /C.  The PM2.5 cyclone on the DFPSS was

replaced  with a WINS impactor on 12/20/96.  The shape of cut-point is sharper for the WINS compared

to the

cyclone inlet.  The DFPSS is capable of operating unattended for four daily 24-hour sample pairs.

Samples were collected every day, starting at 7:00 a.m. and ending at 7:00 a.m. the following day.  The

DFPSS collected daily samples on Teflon and quartz filter media (Teflon for mass and XRF analysis and

quartz for

volatilizable or organic carbon (OC), and elemental carbon (EC).

Two energy dispersive X-ray spectrometers were used to produce the chemical elemental

concentration data, a custom-made machine from Lawrence Berkeley Laboratories (LBL) and a

commercially available Kevex (KEV) system.  Both XRF instruments employed multiple choices for

secondary excitation and utilized a helium atmosphere rather than vacuum in order to preserve volatile

species.  The quartz filters collected with the DFPSS were analyzed by Sunset Laboratory, Forest Grove,

OR using the thermal optical transmission technique.  This technique measured both organic carbon (OC)
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and elemental carbon (EC).  The samples were collected during the time period from March 1995

through June 1998.  A total of 981 samples were finally obtained.  Each sample was characterized by the

measured concentrations of the following 46 chemical elements: Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti,

V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Mo, Rh, Pd, Ag, Cd, Sn, Sb,Te, I, Cs,

Ba, La, W, Au, Hg, Pb, OC and EC.  This 981 x 46 data matrix was used as the basis for the PMF study

to infer possible aerosol sources.  In this data matrix, there were some missing values (e.g. the LBL

instrument could not quantify the elements Na and Mg due to the instrument design) and below-

detection-limit values.  The analytical uncertainty estimates associated with each measured concentration

and the detection limits for both instruments were reported.

DICHOT Data Set 

Every third day collection of 24-hour integrated fine and coarse particle samples were made

using a conventional dichotomous sampler (Andersen Instruments, Inc., Smyrna, GA).  Integrated 24-

hour PM2.5 and PMCF (1.5 :m < d < 10 :m) particle samples were collected on Teflon filters.  Na, Mg,

Organic carbon (OC) and elemental carbon (EC) were not measured.   In order to compare the PMF

results for the two different sampler data sets for the fine particles, the measured concentrations of Na,

OC and EC from the DFPSS study were used based on the corresponding dates.  The Dichot samples

were collected between June 1996 and June 1998.  A total of 217 samples were obtained. 

DATA ANALYSIS

Positive Matrix Factorization (PMF) was used for the data analysis.  PMF is a relatively new

approach to solving the multivariate receptor modeling problem with a least squares approach [5]. 

Suppose X is a n by m data matrix consisting of the measurements of n chemical species in m samples. 

The objective of multivariate receptor modeling is to determine the number of aerosol sources,  p, the

chemical composition profile of each source and the amount that each of the p sources contributes to

each sample.  The factor analysis model can be written as: 

(1)

where G is a n by p matrix of source chemical compositions (source profiles) and F is a p by m matrix of

source contributions (also called factor scores) to the samples.  Each sample is an observation along the

time axis, so F describes the temporal variation of the sources.  E represents the part of the data variance

un-modeled by the p-factor model.  
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In PMF, sources are constrained to have non-negative species concentration, and no sample can

have a negative source contribution.  The error estimates for each observed data point were used as point-

by-point weights.  The essence of PMF can thus be presented as: 

(2)

where

(3)

(4)

with gik $ 0 and fkj $ 0 for k = 1, ...,p, and F is the known matrix of error estimates of X.  Thus, this is a

least squares problem with the values of G and F to be determined.

This form of factorization is quite different from PCA.  G and F are determined so that the

Frobenius norm of E divided by F (point-wise) is minimized.  As shown by Paatero and Tapper [8], it is

impossible to perform factorization using a singular value decomposition (SVD) on such a point-by-point

weighted matrix.  PMF uses a unique algorithm in which both G and F matrices are varied

simultaneously in each least squares step.  The algorithm was described by Paatero [5]. 

Application of PMF requires that error estimates for the data be chosen judiciously so that the

estimates reflect the quality and reliability of each of the data points.  This feature provides one of the

most important advantages of PMF, the ability to handle missing and below-detection-limit data by

adjusting the corresponding error estimates.  In the present application, over 70% of Na and Mg data

points were missing due to the LBL instrument design, and there were some below-detection-limit data

for other chemical elements indicated as negative values because of blank correction.  The error estimate

for each measured concentration was constructed using the combination of the analytical measurement

uncertainty and 20% of detection limit value.  Such a combination scheme, suggested in a previous study

[11], appeared to work well in the present application.  For each element, the missing data and below-

detection-limit data were replaced by the geometric mean of the measured concentrations and half of the

detection limit, respectively, and large error estimates were used for such values (4*geometric mean and
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detection limit, respectively).  To reduce the effect of extreme values or outliers on the model

performance, the robust PMF mode has been used.  

RESULTS AND DISCUSSION

DFPSS Data

A critical step in PMF analysis is the determination of the number of factors.  Analysis of the

goodness of model fit, Q, as defined in Equation (3), can be used to help determine the optimal number

of factors.  Assuming that reasonable error estimates of individual data point are available, then fitting

each value should add one to the sum and the theoretical value of Q should be equal to the number of

data points in the data set.  However, the resulting solutions also have to make physical sense within the

system being studied.  In real environmental data cases, there are often missing and below-detection-limit

data points, their error estimates are mainly based on the investigator judgements, thus it is reasonable for

the calculated Q value to deviate from the theoretical value to some extent.  Also, it is always good

practice to experiment with different numbers of factors and compare the analysis results.  The results of

the multiple linear regression calculation of the reconstructed particulate matter mass concentrations can

provide additional measure of the quality of the fitted model by ensuring that the regression coefficients

are positive. 

The imposition of non-negativity constraints on the factors decreases the rotational freedom and,

in some cases, produces unique solutions with no rotational freedom.  However, some rotational

ambiguity generally remains in the PMF solutions.  In this application, rotational freedom existed.  The

acceptable rotations were determined by trial and error using the parameter FPEAK.

In the DFPSS data set, only fine particles were collected and measured.  The six-factor results

after rotation are presented.  Accompanying the factors, individual error estimates were also computed

for all of the factor elements.  Figure 1a shows the resolved source profiles (the logarithmic scale profiles

are shown in Figure 1b), and the associated temporal variations of the six possible sources are shown in

Figure 2.  

Sources 1 and 2 represent the C-rich/Si-Ca-Fe and C-rich/K aerosol sources, respectively.  Both

of these two sources produced high concentrations of carbonaceous particles through local combustion. 

By examining the temporal variations of these two sources, it was found that both sources had higher

concentration peaks during the winter time, although the C/K source had secondary peaks during the

summer time.  Source 1 has dominant high concentrations of organic carbon (OC) and elemental carbon

(EC) tailed by some of the soil dust components, Si, Ca and Fe.  It is most probably the motor vehicle
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emission source [15].  On the other hand, the biomass burning was likely to have contributed to the C/K

source.  The strong winter concentration peaks of these two sources are generally in agreement with other

studies about Phoenix aerosol [16,17].  Carbonaceous particles are the primary cause of the urban haze

that forms almost daily in Phoenix during the winter months when late night/early morning temperature

inversions concentrate the natural and anthropogenic pollutants in the surface mixing layer.  This results

in a white to brown haze which can be easily seen in the shallow boundary layer during the early morning

hours.  It appears that sources 1 and 2 are closely associated with this winter haze phenomenon.

Source 3 is characterized by the presence of S, Cu, Zn, and Pb.  It was identified as copper

smelters.  The temporal variation of this factor features high peaks in the winter time.

Source 4 is dominated by Na and Cl, a sea salt aerosol source.  This factor does not exhibit a

particular seasonal variation pattern. 

Source 5 is represented by Al, Si, Ca, Ti and Fe, a typical soil source.  The ubiquitous unpaved

roads, construction sites, and tracts of farmland interspersed among the urban development would tend to

produce particles of widely varied compositions of these typical crustal elements.  They must have

contributed to this factor. 

Source 6 is a S-factor, characterized by the high peak of S.  It is most probably attributed to the

secondary sulfate particles emitted from a coal power plant.  The seasonal variation of this factor features

high concentration peaks during the summer time periods.  Other studies also observed the similar trend

for the sulfate particles [16,17].  For Phoenix aerosol, S is not an important component during the winter

haze periods.  The haze episodes are usually associated with carbon- and nitrate-rich aerosols, while in

summer time the concentration of sulfate-rich aerosol is higher.

The investigation of different numbers of factors employed in the PMF analysis indicated that

the 5-factor solution did not produce the sea salt factor and that the 7 or more-factor solutions gave 2 or

more C-rich/Si-Ca-Fe factors which could be combined into one.  Thus, the above 6-factor results have

been presented.

To quantitatively estimate the mass contributions of the 6 resolved sources, the fine PM

(particulate matter) mass was regressed against the factor scores using multiple linear regression (MLR). 

The constant of the linear regression was assumed to be zero.  This regression process also provided an

additional test for the PMF model and the appropriate number of factors that had been chosen for the

analysis.  An unrealistic number of factors for the PMF model very often resulted in negative values for

the multiple linear regression coefficients.  For the 6-factor solution, the obtained regression coefficients

were all positive values with very small standard errors.  The reconstructed mass concentrations of the
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981 samples from the factor scores and the regression coefficients versus the observed fine PM mass

concentrations are shown in Figure 3.  The correlation coefficient is 0.96, indicating statistically the

observed PM mass concentrations were represented quite well by the resolved 6 factors. 

From the factor scores and the regression coefficients, the mass concentrations of each factor

contributing to the total fine mass were obtained.  Figure 4 presents the arithmetic means of the total fine

mass concentrations for all of the 6 factors, and the seasonal means (summer: April-September; winter:

October-March) are also shown.  It can be seen that on average the motor vehicle and biomass burning

factors contributed to the total fine PM mass concentrations the most, and that the sea salt and copper

smelter factors contributed the least.  Season-wise, the motor vehicle, biomass burning, and copper

smelter factors contributed to the fine PM mass more in the winter time than in the summer time.  The

sea salt and soil factors did not show much seasonal variation, while the S-factor had higher mass

contributions in the summer time. 

Dichot Data

The Dichot data set consisted of two parts, the fine and coarse fractions.  The first effort was

made to compare the PMF results on the Dichot fine fraction data with those on the DFPSS data.  Here

the 217x44 data matrix was used as the basis to infer the source profiles since the Na and Mg

concentrations were not measured.  Figure 5 shows sources profiles for the resolved six possible sources,

and the associated source contributions are shown in Figure 6.  It can be seen that the six source profiles

and their temporal variations are quite similar to those obtained based on the DFPSS data.  The multiple

linear regression was again conducted to estimate the source contributions.  The reconstructed mass

concentrations of the 217 samples from the factor scores and the regression coefficients versus the

observed fine mass concentrations are shown in Figure 7.  The overall and seasonal (summer, winter)

average contributions are shown in Figure 8.  The overall and seasonal average contributions for the

Dichot and DFPSS samples match quite well except for Soil and Sea Salt.  Soil and Sea Salt contributed

higher concentrations in the Dichot samples than in DFPSS samples.  

To examine the possible reason for the high concentration of these two sources, Al and Si which

are the major contributor for Soil source, and Cl which is the major contributor for Sea Salt source were

considers.  Figure 9 is a plot of Si, Al and Cl concentrations in Dichot and DFPSS samples that were

found in the original data for the same days This figure showed that there are two trend lines for Al and

Si concentration. It was found that there is a time dependence on these trend lines.  The concentration of

Si and Al were higher before 20 dec 1996 in the DFPSS sample which was due to installation of new
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inlet. The PM2.5 cyclone on the DFPSS was replaced with a WINS impactor.  The shape of cut-point is

sharper for the WINS compared to the cyclone inlet.  This new inlet improved the separation of fine

particles from the coarse particles by reducing the amount of soil in the fine particles samples.  The

overall average contributions for the sources were plotted in Figure 10 showing the concentration of soil

before and after the installation of the new inlet.  The figure showed that the overall average contribution

of soil matched quite well  after the installation of the new inlet Figure 9 also showed that there is a

factor of 1to about 2 in Cl concentration between DFPSS and Dichot samples.  This difference in the two

concentration may contributed to the high concentration in the overall contributions of the sea salt in

Dichot sample.  In addition to the high concentration of OC and EC in the Sea Salt source profiles in the

Dichot source profiles in Figure 5 compared to the Sea Salt source profile in the DFPSS in Figure 1.

For the coarse fraction data, the five-factor model will be discussed as it gave the most

satisfactory results in terms of explaining the underlying structure in the data.  Figure 11 shows the

sources profiles of the five possible sources, and the associated source contributions are shown in Figure

12.  The first source is a typical sea salt source due to the high peak of Cl.  The second factor is the soil

dust source due to Si and crustal elements such as Al, Ti, and Fe.  Si-rich particles have previously been

reported mainly in the coarse particles (15). In Phoenix, airborne soil particles derived primarily from

igneous and metamorphic rocks are transported into the metropolitan area by strong winds from southern

and eastern Arizona and northern Mexico (17).  Major sources for soil derived particles are paved and

unpaved roads, agriculture, and construction (2,18).  The third factor is Fe source/motor vehicle due to

Fe, S, and Pb.  The forth factor is a Ca rich source which can be produced by cement manufacture, by

traffic on concrete roads or by some construction activities near the sampling site.  The presence of S in

Ca-rich source is suggestive of gypsum (CaSO4.2H2O) or anhydrite (CaSO4).  Gypsum and anhydrite

particles can originate from weathering of natural material.  The fifth factor is characterized by S, La and

other trace metal elements which may be due to a coal power plant or other industrial source.

The coarse fraction mass concentration was regressed against the factor scores using multiple

linear regression to estimate the source contributions.  The reconstructed mass concentrations of the 217

samples from the factor scores and the regression coefficients versus the observed coarse mass

concentrations are shown in Figure 13.  The r-squared is 0.98 indicating that the 5 factors represent the

measured coarse mass concentrations very well.  It was found that the major contributing  sources were

the soil dust and the construction (Ca-rich) sources as shown in Figure 14.  This match quite well with

previous Phoenix aerosol studies which showed that the coarse fraction of the Phoenix aerosol is

dominated by mineral particles, mostly Si-Rich, as shown by both bulk and individual particles analysis
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methods (15,17, 18). These sources contributed much of the coarse aerosol mass through emitting Al, Si,

Fe, and Ca particles, having higher concentrations in winter time. 

Conclusions

Aerosol chemical composition data for the fine and coarse particles from Phoenix, AZ have been

analyzed using the positive matrix factorization (PMF) method.  It is concluded that PMF was an

effective method of identifying possible aerosol sources.  Through multiple linear regression using the

measured particulate matter (PM) mass concentrations, the mass contributions of the resolved sources

have been estimated.  Six and five source factors have been obtained for the fine and coarse particles,

respectively. Among them, the motor vehicle and biomass burning factors, two major sources producing

carbonaceous particles, contributed to the fine PM mass the most, and contributed more in the winter

time than in the summer time.  The other sources for the fine particles are copper smelter, sea salt, soil,

and S-factor.  While for the coarse particles, the major contributing sources were the soil dust and the

construction (high Ca) sources.  The other sources were the sea salt, Fe source/motor vehicle and coal

power plant sources.  The results of this study are significant in helping better understanding of the

origins and mass contributions of aerosol sources in Phoenix.   
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Figure Captions

Figure 1a. Source profiles (linear scale) with Q = 50878,  FPEAK=0.20 for DFPSS Sampler

Figure 1b. Source profiles (log scale) with Q = 50878,  FPEAK=0.20 for DFPSS Sampler.

Figure 2. Time series of estimated source contributions to the DFPSS Sample masses.

Figure 3. Predicted fine particle mass concentrations compared with the measured concentration

values for the DFPSS data.

Figure 4. Average mass contributions to the DFPSS measured fine particle masses for winter,

summer and annual time periods.

Figure 5. Source profiles for the DICHOT fine particle data  with Q = 8875, FPEAK=0.15

Figure 6. Source contributions for the DICHOT fine particle data with Q = 8875, FPEAK=0.15.

Figure 7. Predicted fine particle mass concentrations compared with the measured concentration

values for the DICHOT data.

Figure 8. Average mass contributions to the DICHOT measured fine particle masses for winter,

summer and annual time periods.

Figure 9. Comparison of DFPSS and DICHOT concentration data for aluminum, silicon, and

chlorine.

Figure10. Comparison of the average source contributions for the DFPSS and DICHOT fine

particle data.

Figure 11.  Source Profiles for the DICHOT coarse particle samples

Figure 12. Time series of source contributions for the DICHOT coarse particle samples.

Figure 13. Average mass concentration of each Source DICHOT Coarse Samples

Figure 14. Observed vs Predicted Mass Concentrations for the DICHOT Coarse Samples
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Figure 3.
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Figure 5.

Na Al Si P S Cl K Ca Sc Ti V Cr
Mn FeCo NiCu ZnGaGe As Se Br Rb Sr Y ZrMo Rh PdAg Cd Sn Sb Te I Cs Ba LaW AuHg PbOCEC
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Figure 6.
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Figure 7.

Observed Fine Mass Concentration (µg m-3)
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Figure 9.

Al Concentration in DICHOT Sampler (ng/m3)
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Figure 10.

Sources
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Figure 11.

Na Al Si P S Cl K Ca Sc Ti V Cr MnFe Co Ni Cu Zn Ga Ge As Se Br Rb Sr Y Zr MoRh Pd Ag Cd Sn Sb Te I Cs Ba La W Au Hg
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Figure 12.
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Figure 13.

Observed Coarse Mass Concentration

(µg m-3)
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Figure 14.
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